2 resultados para paclitaxel

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: In previous studies cholesterol-rich nanoemulsions (LDE) resembling low-density lipoprotein were shown to concentrate in atherosclerotic lesions of rabbits. Lesions were pronouncedly reduced by treatment with paclitaxel associated with LDE. This study aimed to test the hypothesis of whether LDE-paclitaxel is able to concentrate in grafted hearts of rabbits and to ameliorate coronary allograft vasculopathy after the transplantation procedure. Methods: Twenty-one New Zealand rabbits fed 0.5% cholesterol were submitted to heterotopic heart transplantation at the cervical position. All rabbits undergoing transplantation were treated with cyclosporin A (10 mg . kg(-1) . d(-1) by mouth). Eleven rabbits were treated with LDE-paclitaxel (4 mg/kg body weight paclitaxel per week administered intravenously for 6 weeks), and 10 control rabbits were treated with 3 mL/wk intravenous saline. Four control animals were injected with LDE labeled with [(14)C]-cholesteryl oleate ether to determine tissue uptake. Results: Radioactive LDE uptake by grafts was 4-fold that of native hearts. In both groups the coronary arteries of native hearts showed no stenosis, but treatment with LDE-paclitaxel reduced the degree of stenosis in grafted hearts by 50%. The arterial luminal area in grafts of the treated group was 3-fold larger than in control animals. LDE-paclitaxel treatment resulted in a 7-fold reduction of macrophage infiltration. In grafted hearts LDE-paclitaxel treatment reduced the width of the intimal layer and inhibited the destruction of the medial layer. No toxicity was observed in rabbits receiving LDE-paclitaxel treatment. Conclusions: LDE-paclitaxel improved posttransplantation injury to the grafted heart. The novel therapeutic approach for heart transplantation management validated here is thus a promising strategy to be explored in future clinical studies. (J Thorac Cardiovasc Surg 2011;141:1522-8)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.